Expanding Natural Gas Use in China

Status Report and Preliminary Findings On a Joint Study by SDPC and USEPA

11 September 2001
3rd Oil and Gas Industry Forum
Beijing, China
Jeffrey Logan, Pacific Northwest National Laboratory
Dong Xiucheng, University of Petroleum-Beijing

Overview

- Description and Status of Study
- > Preliminary Findings
- > Follow-on Opportunities

Description of Study

- One of ten environmental agreements reached between SDPC and USEPA in Spring 1999
 - → Focus on broad technical, financial, and policy measures needed to expand gas use in China
 - University of Petroleum-Beijing and Pacific Northwest National Laboratory chosen to conduct study
 - Recommend policy options and further collaboration to overcome barriers

Status

- Preliminary draft is now complete and has been circulated to small group
- Workshop on 13 September to further review findings and discuss follow-on opportunities
- → Final report will be published in November 2001, See http://www.pnl.gov/china

Preliminary Findings: Environment

- Natural gas substituted for dirtier fuels can have a major impact on air quality, human health, and the environment
- Natural gas-fired power generation is cheaper than coal in many regions of China when environmental costs are included
- Greatest environmental benefit from fuel switching in residential and small industrial applications

Emissions from Power Generation in China

Plant Type	SO ₂ (g/kWh)	NO _x (g/kWh)	CO ₂ (g/kWh)	Efficiency (%)
Coal (PC)	8-20	3-5	860	37
Gas (CC)	~0	0.5-2	370	50
IGCC	0.1-1	0.5-1	790	42
Oil (CC)	1-2	2-3	540	49
Coal w/ Scrubber	1-2	1-5	880	36

IGCC = integrated gasification combined cycle; CC = combined-cycle

Source: Battelle Memorial Institute

Environmental Impact of Substituting 60 BCM of Natural Gas for Coal

Reductions in Thousand Tons

	Gas Used	SO ₂	Particulates	CO ₂ (C)
Power	30	860	15	17,000
Industry	15	500	465	9,000
Residential	15	710	550	16,000
Total	60	2,070	1,020	43,000

Source: Battelle Memorial Institute

Preliminary Findings: Administration and Policy

- Positive measures have been taken
 - Commercialization of state-owned oil majors
 - West-East pipeline project
 - Guangdong LNG terminal
- Lack of transparency, coordination, and ruleof-law continues to slow development
 - Gas pricing dilemma
 - Coordinated creation of gas markets
 - Unclear authority
 - Enforcing take-or-pay contracts

Preliminary Findings: Upstream

- > More gas than once thought
- LNG import progress; international pipeline development less certain
- Greater use of advanced technologies and management could yield great benefit
- Foreign investment could play much larger role with proper incentives

Preliminary Findings: Midstream

- West-East natural gas pipeline project is most significant effort to date
- Lack of infrastructure constrains market development
- Building skills to plan, operate, and maintain pipelines are critical
- > Reforms can lower transport costs

Preliminary Findings: Downstream

- Creating market demand for gas is key challenge in future
- Greater enforcement of environmental regulations would raise demand and lower risk
- More R&D needed in key end-use technologies: turbines, fuel cells, gas-to-liquids

Preliminary Conclusions

- China has demonstrated intent to boost gas use, but important hurdles remain
 - Greater overall coordination helpful
 - → Rule-of-law and transparency
 - Reform and market orientation

Preliminary Follow-on Suggestions

> Establish natural gas training center

- Focus on business planning, safety, operations and maintenance
- Boost technology transfer
 - Greater foreign investment is most likely and efficient mechanism
- > Assist in policy and regulatory development
 - Could be part of U.S.-China Oil and Gas Industry Forum